

中华人民共和国国家标准

GB/T 20065-2025

代替 GB/T 20065-2016, GB/T 33279-2017

预应力混凝土用螺纹钢筋

Screw-thread steel bars for the prestressing of concrete

2025-08-29 发布 2026-03-01 实施

国家市场监督管理总局 发布 国家标准化管理委员会 发布

前 言

本文件按照 GB/T 1.1—2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定起草。

本文件代替 GB/T 20065—2016《预应力混凝土用螺纹钢筋》和 GB/T 33279—2017《轨道板用钢筋》。本文件以 GB/T 20065—2016 为主,整合了 GB/T 33279—2017 的内容,与 GB/T 20065—2016 相比,除结构调整和编辑性改动外,主要技术变化如下:

- ——增加了钢筋分类(见 4.1);
- ——更改了预应力用精轧螺纹钢筋的最大力总延伸率 A_{st} (见 7.2.1,GB/T 20065—2016 的 7.4.1);
- ——更改了 PSB1080 级及以上级别的预应力用精轧螺纹钢筋的非金属夹杂物评级要求(见 7.5, GB/T 20065—2016 的 7.5);
- ——更改了推荐的预应力用精轧螺纹钢筋公称直径(见 7.7.1,GB/T 20065—2016 的 6.1);
- ——增加了预应力用精轧螺纹钢筋 28 mm、34 mm、38 mm、42 mm 规格(见 7.7.2);
- ——更改了重量及允许偏差(见 7.7.6, GB/T 20065—2016 的 6.7);
- ——更改了预应力用精轧螺纹钢筋的拉伸试验方法(见 8.1,GB/T 20065—2016 的 8.1);
- ——增加了轨道板用精轧螺纹钢筋反向弯曲试验方法(见 8.4);
- ——更改了尺寸测量要求(见 8.6,GB/T 20065—2016 的 8.5)。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由中国钢铁工业协会提出。

本文件由全国钢标准化技术委员会(SAC/TC 183)归口。

本文件起草单位:中冶建筑研究总院有限公司、中信金属股份有限公司、福建三钢闽光股份有限公司、成都冶金实验厂有限公司、福建科宝金属制品有限公司、抚顺新钢铁有限责任公司、中圳特种钢材(江苏)有限公司、冶金工业信息标准研究院、中冶检测认证有限公司、四川德润钢铁集团航达钢铁有限责任公司、中铁十六局集团有限公司、山东钢铁集团永锋临港有限公司、新兴铸管股份有限公司、敬业钢铁有限公司、首钢长治钢铁有限公司、富佰新材料(浙江)有限公司。

本文件主要起草人:朱建国、陈洁、张永青、程凯群、王光文、王玉婕、王开建、倪晓东、吴海洋、李晓亮、刘宝石、罗毅、周文波、王小清、韦堂松、朱秀芹、吴雨然、张冉冉、刘小明、郭志永、胡高飞、杨伟勇、张觉灵、周剑波、王军、陈庆丰、徐吴驰、陶军、潘宜杰。

本文件所代替文件的历次版本发布情况为:

- ----GB/T 20065,2006 年首次发布,2016 年第一次修订;
- ——GB/T 33279,2017 年首次发布。

预应力混凝土用螺纹钢筋

1 范围

本文件规定了预应力混凝土用螺纹钢筋(以下简称钢筋)的分类、牌号、订货内容、制造工艺、技术要求、检验规则、包装、标志和质量证明书,描述了相应的试验方法。

本文件适用于采用热轧、轧后余热处理或热处理等工艺生产的预应力混凝土用精轧螺纹钢筋(以下 简称预应力用精轧螺纹钢筋)和采用热轧工艺生产的轨道板用精轧螺纹钢筋。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- GB/T 222 钢及合金 成品化学成分允许偏差
- GB/T 223.5 钢铁 酸溶硅和全硅含量的测定 还原型硅钼酸盐分光光度法
- GB/T 223.11 钢铁及合金 铬含量的测定 可视滴定或电位滴定法
- GB/T 223.12 钢铁及合金化学分析方法 碳酸钠分离-二苯碳酰二肼光度法测定铬量
- GB/T 223.14 钢铁及合金化学分析方法 钽试剂萃取光度法测定钒含量
- GB/T 223.17 钢铁及合金化学分析方法 二安替比林甲烷光度法测定钛量
- GB/T 223.19 钢铁及合金化学分析方法 新亚铜灵-三氯甲烷萃取光度法测定铜量
- GB/T 223.23 钢铁及合金 镍含量的测定 丁二酮肟分光光度法
- GB/T 223.26 钢铁及合金 钼含量的测定 硫氰酸盐分光光度法
- GB/T 223.37 钢铁及合金 氮含量的测定 蒸馏分离靛酚蓝分光光度法
- GB/T 223.40 钢铁及合金 铌含量的测定 氯磺酚 S 分光光度法
- GB/T 223.59 钢铁及合金 磷含量的测定 铋磷钼蓝分光光度法和锑磷钼蓝分光光度法
- GB/T 223.63 钢铁及合金 锰含量的测定 高碘酸钠(钾)分光光度法
- GB/T 223.68 钢铁及合金化学分析方法 管式炉内燃烧后碘酸钾滴定法测定硫含量
- GB/T 223.69 钢铁及合金 碳含量的测定 管式炉内燃烧后气体容量法
- GB/T 223.83 钢铁及合金 高硫含量的测定 感应炉燃烧后红外吸收法
- GB/T 223.84 钢铁及合金 钛含量的测定 二安替比林甲烷分光光度法
- GB/T 223.86 钢铁及合金 总碳含量的测定 感应炉燃烧后红外吸收法
- GB/T 2101 型钢验收、包装、标志及质量证明书的一般规定
- GB/T 4336 碳素钢和中低合金钢 多元素含量的测定 火花放电原子发射光谱法(常规法)
- GB/T 14370 预应力筋用锚具、夹具和连接器
- GB/T 17505 钢及钢产品 交货一般技术要求
- GB/T 20066 钢和铁 化学成分测定用试样的取样和制样方法
- GB/T 20123 钢铁 总碳硫含量的测定 高频感应炉燃烧后红外吸收法(常规方法)
- GB/T 20125 低合金钢 多元素含量的测定 电感耦合等离子体原子发射光谱法
- GB/T 21839 预应力混凝土用钢材试验方法

GB/T 20065-2025

GB/T 28900 钢筋混凝土用钢材试验方法

GB/T 38937 钢筋混凝土用钢术语

YB/T 081 冶金技术标准的数值修约与检测数值的判定

3 术语和定义

GB/T 38937 界定的及下列术语和定义适用于本文件。

3.1

精轧螺纹钢筋 finishing rolling screw-thread steel bars

一种热轧成型并带有不连续的外螺纹的直条钢筋,该钢筋在任意截面处,均能用带有匹配形状的内螺纹的连接器或锚具进行连接或锚固。

3.2

公称截面面积 nominal circle area

不含螺纹的钢筋截面面积。

3.3

有效截面系数 coefficient of efficiency section

钢筋公称截面面积与理论截面面积(含螺纹的截面面积)的比值。

4 分类、牌号

4.1 分类

预应力混凝土用螺纹钢筋分为两类: 预应力用精轧螺纹钢筋、轨道板用精轧螺纹钢筋。 预应力用精 轧螺纹钢筋作为预应力混凝土结构中预应力筋使用, 轨道板用精轧螺纹钢筋作为预应力混凝土轨道板 中非预应力筋使用。

4.2 牌号

钢筋牌号的构成及其含义见表 1。根据需方要求,轨道板用精轧螺纹钢筋可提供表 1 以外其他强度级别的钢筋。

表 1 钢筋牌号的构成及其含义

类别	牌号	牌号构成	英文字母含义
预应力用精轧螺纹钢筋	PSB785 PSB830 PSB930 PSB1080 PSB1200	由 PSB+屈服强度 特征值构成	PSB:预应力螺纹钢筋的英文(Prestressing Screw Bars)缩写
轨道板用精轧螺纹钢筋	PSBT500	由 PSBT+屈服强度 特征值构成	PSB:预应力螺纹钢筋的英文(Prestressing Screw Bars)缩写; T:轨道板的英文(Track)缩写

5 订货内容

按本文件订货的合同至少包括下列内容:

- a) 本文件编号;
- b) 产品名称:
- c) 牌号;
- d) 规格及重量(或数量);
- e) 特殊要求。

6 制造工艺

6.1 冶炼方法

钢应采用转炉或电弧炉冶炼,并应进行炉外精炼。

6.2 交货状态及交货型式

- 6.2.1 预应力用精轧螺纹钢筋以热轧状态、轧后余热处理状态或热处理状态按直条交货。
- 6.2.2 轨道板用精轧螺纹钢筋以热轧状态按直条交货。

7 技术要求

7.1 化学成分

- 7.1.1 预应力用精轧螺纹钢筋的化学成分(熔炼分析)磷、硫含量不大于 0.035%,生产厂应进行化学成分和合金元素的选择,以保证经过不同工艺生产的成品钢筋能满足 7.2 规定的力学性能要求。
- 7.1.2 轨道板用精轧螺纹钢筋化学成分(熔炼分析)和碳当量应符合表 2 的规定。根据需要,钢中可加入 V、Nb、Ti 等元素。

表 2 轨道板用精轧螺纹钢筋化学成分和碳当量(熔炼分析)

始口		化当	碳当量 Ceq %				
牌号 				不大于			
	С	Si	0.50				
PSBT500	0.25	0.80	0.50				
注:碳当量 Ceq(%)按以下公式计算:Ceq=C+Mn/6+(Cr+V+Mo)/5+(Cu+Ni)/15。							

- 7.1.3 钢筋的成品化学成分允许偏差应符合 GB/T 222 的规定。
- 7.1.4 轨道板用精轧螺纹钢筋的碳当量 Ceq 允许偏差为+0.02%。

7.2 力学性能

7.2.1 钢筋的下屈服强度 R_{el} 、抗拉强度 R_{m} 、断后伸长率 A、最大力总延伸率 A_{gt} 等力学性能特征值应

GB/T 20065—2025

符合表3的规定。表3所列各力学性能特征值,其中应力松弛性能为最大保证值,其他为最小保证值。

表 3 钢筋的力学性能

	7883 B	나 나 기미 eks	w こ 体 V 去	最大力总延伸率b	应力松	弛性能	
级别	下屈服强度 ^a $R_{\rm eL}/{\rm MPa}$	抗拉强度 R _m /MPa	断后伸长率 A/%	$ (L_0 \geqslant 100 \text{ mm}) $		1 000 h 后应 力松弛率	
		不	小于		特征值的 百分数/%	ρ/%	
PSB785	785	980	8			≤ 4.0	
PSB830	830	1 030	7				
PSB930	930	1 080	7	4.5	70		
PSB1080	1 080	1 230	6				
PSB1200	1 200	1 330	6				
PSBT500	500	550	15.0	8.0	_	_	

^a 无明显屈服时,用规定塑性延伸强度 $(R_{p0.2})$ 代替。

7.2.2 钢筋伸长率类型通常选用 A。经供需双方协商,并在合同中注明,也可选用 $A_{\rm gt}$ 。

7.3 工艺性能

轨道板用精轧螺纹钢筋按表 4 规定的弯曲压头直径进行反向弯曲,受弯曲部位表面不应产生裂纹。

表 4 轨道板用精轧螺纹钢筋弯曲性能

单位为毫米

牌号	公称直径 d	弯曲压头直径 D
PSBT500	€25	8 <i>d</i>
1301300	>25	10 <i>d</i>

7.4 疲劳性能

钢筋疲劳性能应符合表 5 规定。

表 5 钢筋疲劳性能

类型	负荷		围 $F_{ m r}/S_{ m n}$ Pa	不断裂次数
预应力用精轧 螺纹钢筋	$0.7S_{\rm n}R_{\rm m} \sim (0.7S_{\rm n}R_{\rm m} - F_{\rm r})$	1:	95	2×10^6
轨道板用精轧	$0.45S_{\rm n}R_{\rm eL} \sim (0.45S_{\rm n}R_{\rm eL} - F_{\rm r})^{\rm a}$	d≤28	175	$2 \times 10^{\circ}$
螺纹钢筋	$0.45S_{\rm n}$ $R_{\rm eL} \sim (0.45S_{\rm n}$ $R_{\rm eL} - F_{\rm r})^{-1}$	d>28	145	

 $^{^{\}rm b}$ $L_{\rm 0}$ \geq 100 mm 不适用于 PSBT500 钢筋, PSBT500 钢筋标距为 $L_{\rm 0}$ = 100 mm。

表 5 钢筋疲劳性能 (续)

类型	负荷	应力范围 $F_{\mathfrak{r}}/S_{\mathfrak{n}}$ MPa	不断裂次数
----	----	---	-------

- S_n :公称截面面积,单位为平方毫米(mm²);
- R_m :抗拉强度的特征值,单位为兆帕(MPa);
- F_r :应力范围的等效负荷值,单位为牛(N);
- Rel:下屈服强度的特征值,单位为兆帕(MPa)
- 。轨道板用精轧螺纹钢筋试验最大应力为不大于 0.6 倍屈服强度特征值,通常取 0.45 倍屈服强度特征值。

7.5 非金属夹杂物

经供需双方协商,并在合同中注明,PSB1080级及以上级别的预应力用精轧螺纹钢筋可进行非金属夹杂物检验。

7.6 表面质量

- 7.6.1 钢筋表面不应有横向裂纹、结疤和折叠,也不准许有影响使用的拉痕、机械损伤等,允许有不影响钢筋力学性能和连接的其他缺陷。
- 7.6.2 钢筋表面可有浮锈,但不应有锈皮及目视可见的麻坑等腐蚀现象。

7.7 尺寸、外形、重量

7.7.1 公称直径范围及推荐直径

- 7.7.1.1 预应力用精轧螺纹钢筋的公称直径范围为 $15~\text{mm}\sim75~\text{mm}$,本文件推荐的钢筋公称直径为 18~mm, 25~mm, 32~mm, 40~mm, 50~mm.
- 7.7.1.2 轨道板用精轧螺纹钢筋的公称直径范围为 18 mm~32 mm。
- 7.7.1.3 除以上规格外,可根据用户要求提供其他规格的钢筋。

7.7.2 公称截面面积与理论重量

预应力用精轧螺纹钢筋的公称截面面积与理论重量见表 6。轨道板用精轧螺纹钢筋的公称截面面积与理论重量见表 7。

表 6 预应力用精轧螺纹钢筋的公称截面面积与理论重量

公称直径 d _n mm	公称截面面积 S _n mm²	有效截面系数	理论截面面积 mm²	理论重量 m g/mm
15	177	0.97	182.5	1.43
18	254	0.95	267.4	2.10
25	491	0.94	522.3	4.10
28	616	0.95	648.4	5.09
32	804	0.95	846.3	6.64
34	908	0.95	955.8	7.50
36	1 018	0.95	1 071.6	8.41
38	1 134	0.95	1 193.7	9.37

公称直径 d _n mm	公称截面面积 S _n mm ²	有效截面系数	理论截面面积 mm²	理论重量 <i>m</i> g/mm						
40	1 257	0.95	1 323.2	10.39						
42	1 385	0.95	1 457.9	11.44						
50	1 963	0.95	2 066.3	16.22						
60	2 827	0.95	2 975.8	23.36						
63.5	3 167	0.94	3 369.1	26.45						
65	3 318	0.95	3 492.6	27.42						
70	3 848	0.95	4 050.5	31.80						
75	4 418	0.94	4 700.0	36.90						
注:表中理论	注:表中理论重量按钢的密度为 7.85 g/cm³计算。									

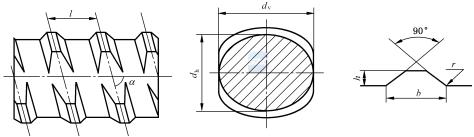

表 6 预应力用精轧螺纹钢筋的公称截面面积与理论重量(续)

表 7 轨道板用精轧螺纹钢筋的公称截面面积与理论重量

公称直径 d _n	公称截面面积 S _n mm²	有效截面系数	理论截面面积 mm²	理论重量 <i>m</i> g/mm
18	254	0.95	267.4	2.10
20	314	0.95	330.5	2.59
25	491	0.94	522.3	4.10
28	616	0.95	648.4	5.09
32	804	0.95	846.3	6.64
注:表中理论重	重量按钢的密度为 7.85	g/cm³ 计算。		

7.7.3 外形及尺寸允许偏差

7.7.3.1 钢筋外形采用螺纹状无纵肋且钢筋两侧螺纹在同一螺旋线上,其外形如图 1 所示。

标引符号说明:

d_h ——垂直于螺纹方向的基圆直径;

d_v ——平行于螺纹方向的基圆直径;

h ----螺纹高;

b ----螺纹底宽;

l ──螺距;

r ——螺纹根弧;

α ——导角。

图 1 钢筋表面及截面形状

7.7.3.2 预应力用精轧螺纹钢筋尺寸及允许偏差应符合表 8 的规定。轨道板用精轧螺纹钢筋尺寸及允许偏差应符合表 9 的规定。

表 8 预应力用精轧螺纹钢筋尺寸及允许偏差

		基圆直	径/mm		螺纹高	哥/mm	螺纹底	宽/mm	螺距	/mm		
公称直径	d	l h	d	l v	,	h	į į	,		!	螺纹根 弧 r/	导角 α/
$d_{\mathrm{n}}/\mathrm{mm}$	公称 尺寸	允许 偏差	公称 尺寸	允许 偏差	公称 尺寸	允许 偏差	公称 尺寸	允许 偏差	公称 尺寸	允许 偏差	mm	(°)
15	14.7	±0.2	14.4	±0.5	1.0	±0.2	4.2	\pm 0.3	10.0		0.5	78.5
18	18.0	±0.4	18.0	+0.4 -0.8	1.2	±0.3	4.5	±0.5	10.0	± 0.2	0.5	80.5
25	25.0	1 10.4	25.0	+0.4 -0.8	1.6	±0.3	6.0	±0.5	12.0	±0.2	1.5	81
28	27.3		26.8	+0.4 -1.2	1.8		7.0		14.0	±0.2	2.0	81.5
32	32.0		32.0	$+0.4 \\ -1.2$	2.0		7.0		16.0	±0.2	2.0	81.5
34	34.0		34.0	+0.4 -1.2	2.2	±0.4	7.2		16.0		2.0	81.5
36	36.0		36.0	$^{+0.4}_{-1.2}$	2.2		8.0		18.0		2.5	81.5
38	38.0		38.0	+0.4 -1.2	2.4		8.0		18.0	± 0.3	2.5	81.5
40	40.0		40.0	$+0.4 \\ -1.2$	2.5		8.0		20.0		2.5	81.5
42	42.0	± 0.5	42.0	$+0.4 \\ -1.2$	2.6	±0.5	8.4	±0.5	20.0		2.5	81.5
50	50.0		50.0	$^{+0.4}_{-1.2}$	3.0		9.0		24.0		2.5	81.8
60	60.0		60.0	$+0.4 \\ -1.2$	3.0		10.0		22.0		2.5	83.7
63.5	63.5		63.5	$+0.4 \\ -1.2$	3.0		12.0		22.0		2.5	84
65	65.0		65.0	+0.4 -1.2	3.0	±0.6	12.0		22.0	\pm 0.4	2.5	84.1
70	70.0		70.0	$^{+0.4}_{-1.2}$	3.0		12.0		22.0		2.5	84.5
75	75.0		75.0	$^{+0.4}_{-1.2}$	3.0		12.0		20.0		2.5	85

	基圆且	径/mm	m 螺纹高/mm			螺纹底宽/mm 螺距/mm			/mm	
d	h	d	l _v	1	h		,	l		F. 7. //0\
公称 尺寸	允许 偏差	公称 尺寸	允许 偏差	公称 尺寸	允许 偏差	公称 尺寸	允许 偏差	公称 尺寸	允许 偏差	导角 α/(°)
18.0		18.0	+0.4 -0.8	1.2	\pm 0.3	4.5	±0.5	10.0	±0.2	80.5
19.5	± 0.4	19.1	+0.5 -0.5	1.3	+0.2	4.8	0 -0.2	10.0	± 0.3	81.5
25.0		25.0	+0.4 -0.8	1.6	\pm 0.3	6.0	±0.5	12.0	±0.2	81
27.3	±0.5	27.0	+0.4 -1.0	1.7	± 0.4	6.5	±0.5	14.0	±0.3	81
32.0	1 ⊥0.5	32.0	$+0.4 \\ -1.2$	2.0	±0.4	7.0	±0.5	16.0	±0.2	80.5
-	公称 尺寸 18.0 19.5 25.0 27.3	dh 公称 允许 尺寸 偏差 18.0 4 19.5 ±0.4 25.0 ±0.5	dh de 公称 允许 公称 尺寸 偏差 尺寸 18.0 18.0 19.5 ±0.4 19.1 25.0 25.0 27.3 ±0.5	d_h d_v 公称 允许 公称 允许 尺寸 偏差 尺寸 偏差 18.0 18.0 $+0.4$ -0.8 19.5 ± 0.4 19.1 $+0.5$ -0.5 25.0 25.0 $+0.4$ -0.8 27.3 ± 0.5 ± 0.5 -0.5	d_h d_v D_h 公称 允许 公称 尺寸 偏差 尺寸 偏差 尺寸 偏差 尺寸 18.0 $+0.4$ -0.8 1.2 $+0.5$ ± 0.4 19.1 $+0.5$ -0.5 1.3 ± 0.5 ± 0.6 ± 0.7 ± 0.8	d_h d_v h 公称 允许 公称 允许 尺寸 偏差 尺寸 偏差 尺寸 偏差 尺寸 偏差 尺寸 偏差 18.0 18.0 18.0 10.5	d_h d_v h d_v	d_h d_v h b 公称 允许 公称 允许 公称 允许 公称 允许 保差 尺寸 偏差 18.0 $\frac{+0.4}{-0.8}$ 1.2 ± 0.3 4.5 ± 0.5 19.5 ± 0.4 19.1 $\frac{+0.5}{-0.5}$ 1.3 $\frac{+0.2}{0}$ 4.8 $\frac{0}{-0.2}$ 25.0 $\frac{+0.4}{-0.8}$ 1.6 ± 0.3 6.0 ± 0.5 27.3 ± 0.5 ± 0.5 ± 0.5	d_h d_v h b Δm Δ	d_h d_v h b l Δm

表 9 轨道板用精轧螺纹钢筋尺寸及允许偏差

7.7.4 长度及允许偏差

钢筋通常按定尺长度交货,具体交货长度应在合同中注明,钢筋剪切长度允许偏差为 0 mm~+50 mm,可按需方要求长度进行锯切再加工,允许偏差为 0 mm~+20 mm。

7.7.5 弯曲度和端部

- 7.7.5.1 钢筋的弯曲度不应影响正常使用,每米弯曲度应不大于 4 mm,总弯曲度不大于总长度的 0.4%。
- 7.7.5.2 钢筋的端部应平齐、正直,不影响连接器通过,局部变形应不影响使用。

7.7.6 重量及允许偏差

- 7.7.6.1 钢筋按实际重量或理论重量交货,钢筋的理论重量为钢筋长度乘以表 6、表 7 中钢筋的每米理论重量
- 7.7.6.2 钢筋实际重量与理论重量的允许偏差应为±4.0%。

8 试验方法

8.1 检验项目

8.1.1 每批钢筋的检验项目、取样数量、取样方法和试验方法应符合表 10 的规定。

表 10 出厂检验

序号	检验项目	分类	取样数量/个	取样方法	试验方法
1	化学成分 (熔炼成分)	钢筋	1/炉	GB/T 20066	8.2

表 10 出厂检验(续)

序号	检验项目	分类	取样数量/个	取样方法	试验方法
2	拉伸	预应力用精轧 螺纹钢筋	2	不同根钢筋切取	8.3,GB/T 21839
		轨道板用精轧 螺纹钢筋	2	不同根钢筋切取	8.3,GB/T 28900
3	反向弯曲	轨道板用精轧 螺纹钢筋	2	不同根钢筋切取	8.4,GB/T 28900
4	应力松弛性能。	预应力用精轧 螺纹钢筋	1/合同批	任选一根钢筋	8.5,GB/T 21839
5	疲劳。	预应力用精轧 螺纹钢筋	1/合同批	任选一根钢筋	GB/T 21839
		轨道板用精轧 螺纹钢筋	1/合同批	任选一根钢筋	GB/T 28900
6	非金属夹杂物	预应力用精轧 螺纹钢筋	7.5		
7	表面	钢筋	逐根	_	目视
8	尺寸	钢筋	逐根	_	8.6
9	重量偏差	预应力用精轧 螺纹钢筋	1/批	任选一根钢筋	8,7
		轨道板用精轧 螺纹钢筋	3/批	不同根钢筋切取	0.1

^a 合同批为一个订货合同的总量。经供需双方协商,并在合同中注明,可由同一工艺连续生产的同一牌号检验数据代替。

8.1.2 应力松弛性能试验和疲劳性能试验应在原料、生产工艺、设备有重大变化及新产品生产时进行型式检验。型式检验取样方法和试验方法应符合表 11 的规定。

表 11 型式检验

序号	检验项目	类型	取样数量	取样方法	试验方法
1	1 000 h 应力松弛 性能试验	预应力用精轧 螺纹钢筋	1	任选1根钢筋 切取	GB/T 21839
2	疲劳性能试验	预应力用精轧 螺纹钢筋	2	不同根钢筋 切取	GB/T 21839
		轨道板用精轧 螺纹钢筋	5	不同根钢筋切取	GB/T 28900
不准许使用推算法测量 1 000 h 应力松弛性能					

8.2 化学成分检验

钢的化学成分试验一般按 GB/T 4336、GB/T 20123、GB/T 20125 或通用的化学分析方法进行,但 仲裁时应按 GB/T 223.5、GB/T 223.11、GB/T 223.12、GB/T 223.14、GB/T 223.17、GB/T 223.19、GB/T 223.23、GB/T 223.26、GB/T 223.37、GB/T 223.40、GB/T 223.59、GB/T 223.63、GB/T 223.68、GB/T 223.69、GB/T 223.83、GB/T 223.84、GB/T 223.86的规定进行。

8.3 拉伸试验

- 8.3.1 拉伸试验应采用全截面尺寸钢筋试样进行,不准许用机加工减少截面。
- 8.3.2 计算钢筋强度应采用表 6、表 7 所列公称横截面面积计算。
- 8.3.3 最大力总延伸率 A_{gt} 的检验,按表 10 规定方法执行。如有争议,应采用手工方法。使用计算机采集数据或使用电子拉伸设备的,测量总延伸率时预加负荷对试样所产生的延伸应加在总延伸内。
- 8.3.4 如试样在夹头内或距钳口 2d 以内断裂而性能达不到本文件规定时,试验无效。
- 8.3.5 试样夹具之间的最小自由长度应符合表 12 的要求。

表 12 最小自由长度

单位为毫米

钢筋公称直径	试样夹具之间的最小自由长度		
<i>d</i> ≤25	350		
25 <d≤32< td=""><td>400</td></d≤32<>	400		
32 <d≤50< td=""><td>500</td></d≤50<>	500		
50 <d≤75< td=""><td>750</td></d≤75<>	750		

8.4 反向弯曲试验

反向弯曲试验,先正向弯曲 90° ,把经正向弯曲后的试样在 100° 10° 温度下保温不少于 10° 10° 间间,经自然冷却后再反向弯曲 10° 两个弯曲角度均应在保持载荷时测量。允许在室温下直接进行反向弯曲,但仲裁检验应在时效后进行反向弯曲。

8.5 应力松弛性能试验

- 8.5.1 应力松弛性能试验应按 GB/T 21839 的规定进行。
- 8.5.2 试验期间,试样的环境温度应保持在 20 ℃ ± 2 ℃内。
- 8.5.3 公称直径在 $15 \text{ mm} \sim 40 \text{ mm}$ 范围内的,试样标距长度不小于公称直径的 60 倍;公称直径在 $50 \text{ mm} \sim 75 \text{ mm}$ 范围内的,试样标距长度不小于 2 500 mm。
- 8.5.4 试样制备后不应进行任何热处理和冷加工。
- 8.5.5 如无特殊要求,预应力用精轧螺纹钢筋允许用至少 120 h 的测试数据推算 1 000 h 的松弛率值。

8.6 尺寸测量

- 8.6.1 钢筋的外形除尺寸测量检验外,还应采用匹配形状的连接器检验旋进情况。
- 8.6.2 钢筋的尺寸测量应精确到 0.1 mm,基圆直径应用分度值为 0.01 mm 的量具测量,在任何部位同一截面两个垂直方向上测量。
- 8.6.3 钢筋螺纹高的测量,采用测量同一截面两侧螺纹中心高度平均值的方法,即测取钢筋最大外径,

减去该处内径,所得数值的一半为该处螺纹高,应精确到 0.1 mm。

8.6.4 钢筋螺距采用测量平均螺距的方法进行测量。即测取钢筋同一面上第 1 个与第 11 个横肋的中心距离,该数值除以 10 即为螺距,应精确到 0.1 mm。需对两个面进行测量。

8.7 重量偏差的测量

- 8.7.1 测量钢筋重量偏差时,试样长度不小于500 mm,长度测量精确到1 mm,重量测定应精确到1 g。
- 8.7.2 钢筋实际重量与理论重量的偏差按公式(1)计算:

式中:

η ——实际重量与理论重量的偏差;

M──试样实际总重量,单位为克(g);

L ——试样总长度,单位为毫米(mm);

m ——理论单位重量,单位为克每毫米(g/mm)。

9 检验规则

9.1 检验分类

钢筋的检验分为特征值检验、机械连接检验和交货检验。

9.2 特征值检验

- 9.2.1 特征值检验适用于下列情况:
 - a) 供方对产品质量控制的检验;
 - b) 需方提出要求,经供需双方协议一致的检验;
 - c) 第三方产品认证及仲裁检验。
- 9.2.2 特征值检验应按附录 A 的规则进行。

9.3 机械连接检验

钢筋允许用螺旋型连接器连接,成品钢筋生产厂应负责证明在沿钢筋长度上任一点切割的钢筋都可以与任何其他长度钢筋相连接。连接器及锚具可由成品钢筋生产厂配套提供。连接器及锚具应符合 GB/T 14370 的相关规定。

9.4 交货检验

9.4.1 适用情况

交货检验适用于钢筋验收批的检验。

9.4.2 组批规则

- 9.4.2.1 钢筋应按批进行检查和验收,每批应由同一牌号、同一炉号、同一规格、同一交货状态的钢筋组成。
- 9.4.2.2 允许由同一牌号、同一冶炼方法、同一浇注方法的不同炉号组成混合批,混合批的重量不大于 60 t。对于轨道板用螺纹精轧钢筋各炉号熔炼分析碳含量之差应不大于 0.02%,锰含量之差应不大于 0.15%。

9.4.3 检验项目和取样数量

钢筋各检验项目和取样数量应符合表 10 的规定。每批重量通常不大于 60 t,超过 60 t 的部分,每增加 40 t(或不足 40 t 的余数),精轧螺纹钢筋增加一个拉伸试验,轨道板用精轧螺纹钢筋增加一个拉伸试验试样和一个反向弯曲试验试样。

9.4.4 复验与判定

- 9.4.4.1 钢筋的复验与判定应符合 GB/T 17505 的规定。
- 9.4.4.2 钢筋的重量偏差项目不应重新取样进行复验。

9.5 数值修约

检验结果的数值修约与判定应符合 YB/T 081 的规定。

10 包装、标志和质量证明书

- 10.1 预应力用精轧螺纹钢筋按强度级别进行端头涂色,规定如下: PSB785 不涂色、PSB830 涂白色、PSB930 涂黄色、PSB1080 涂红色、PSB1200 涂蓝色。
- 10.2 除上述规定外,钢筋的包装、标志和质量证明书应符合 GB/T 2101 的有关规定。

附 录 A

(规范性)

特征值检验规则

A.1 试验组批和取样数量

A.1.1 预应力用精轧螺纹钢筋

A.1.1.1 试验组批

试验批可依据实际要求决定,一般为产品批组成的合同批。

A.1.1.2 每批取样数量

- A.1.1.2.1 化学成分(成品分析),应从不同根钢筋取2个试样。
- **A.1.1.2.2** 力学性能试验,应从不同钢筋上取 15 个试样(如果适用 60 个试样时,见 A.2.1 规定)进行拉力试验。
- A.1.1.2.3 松弛试验取 2 个试样。
- A.1.1.2.4 疲劳试验取 3 个试样。

A.1.2 轨道板用精轧螺纹钢筋

A.1.2.1 试验组批

为了试验,交货应细分为试验批。组批规则应符合9.4.2的规定。

A.1.2.2 每批取样数量

- A.1.2.2.1 化学成分(成品分析),应从不同根钢筋取2个试样。
- A.1.2.2.2 力学性能试验,应从不同钢筋取 15 个试样(如果适用 60 个试样时,见 A.2.1 规定)进行拉力试验。
- A.1.2.2.3 疲劳试验取 3 支试样。

A.2 试验结果的评定

A.2.1 参数检验

为检验规定的性能,如特性参数 R_{eL} 、 R_{m} 、 A_{gt} 或 A,应确定以下参数:

- a) 15 个试样的所有单个值 X_i (试样数量 n=15);
- b) 平均值 $m_{15}(n=15)$;
- c) 标准偏差 $S_{15}(n=15)$ 。

如果所有性能满足公式(A.1)给定的条件则该试验批符合要求。

式中:

 f_k ——要求的特征值;

2.33 ——当 n=15,90% 置信水平(1-a=0.90),不合格率 5%(P=0.95)时验收系数 K 的值。

如果上述条件不能满足,系数 $k' = \frac{m_{15} - f_k}{S_{15}}$ 由试验结果确定。式中 $k' \ge 2$ 时,试验可继续进行。在

GB/T 20065—2025

此情况下,应从该试验批的不同根钢筋上切取 45 个试样进行试验,这样可得到总计 60 个试验结果 (n=60)。

如果所有性能满足公式(A.2)条件,则应认为该试验批符合要求。

式中:

1.93—— 当 n = 60,90% 置信水平(1-a = 0.90),不合格率 5%(P = 0.95) 时验收系数 K 的值。

A.2.2 属性检验

当试验性能规定为最大或最小值时,15个试样测定的所有结果应符合 A.2.1 的要求,此时,应认为该试验批符合要求。

当最多有两个试验结果不符合条件时,应继续进行试验,此时,应从该试验批的不同根钢筋上,另取45个试样进行试验,这样可得到总计60个试验结果,如果60个试验结果中最多有2个不符合条件,该试验批符合要求。

A.2.3 化学成分

2个试样均应符合表 2 的要求。

A.2.4 松弛试验

2个试样均应符合表3的要求。

A.2.5 疲劳试验

3个试样均应符合表5的要求。

5AC

